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Background: Global inequities in access to cancer diagnostics and treatment contribute to wide variation in cancer 
mortality-to-incidence ratios (MIRs), a proxy for survival. We aimed to develop an interpretable machine learning 
framework to quantify country-specific health system contributors to MIR and inform policy prioritization. 
Materials and methods: We assembled national MIRs from GLOBOCAN 2022 for 185 countries and health system 
indicators from multilateral sources, including gross domestic product (GDP) per capita, universal health coverage 
(UHC) index, radiotherapy centers per population, health spending (%GDP), out-of-pocket expenditure, work force 
densities (physicians; nurses/midwives; surgical work force), pathology availability, Human Development Index, and 
gender inequality index. A CatBoost gradient-boosting model was trained with repeated leave-one-country-out 
cross-validation (10 repeats; 1850 predictions). Nested hyperparameter optimization and strict leakage control 
were used. Model interpretability employed SHapley Additive exPlanations (SHAP; TreeExplainer) to generate global 
and country-level feature attributions. SHAP values, model-derived metrics quantifying each factor’s contribution to 
cancer outcomes, were generated. Performance metrics included R 2 , root mean squared error (RMSE), mean 
absolute error, and Pearson correlation; uncertainty was estimated by bootstrap resampling.
Results: The model showed strong out-of-sample performance [R 2 = 0.852, 95% confidence interval (CI) 0.801-0.891; 
RMSE 0.057, 95% CI 0.050-0.064]; correlation between predicted and observed MIRs was r = 0.923 (P = 8.30 × 10 − 78 ). 
Global SHAP contributions ranked GDP per capita (22.5%), radiotherapy centers per population (15.4%), and UHC index 
(12.9%) as the leading determinants. Country-specific SHAP profiles revealed substantial heterogeneity in dominant 
drivers across settings, enabling tailored policy levers (e.g. infrastructure, coverage expansion, or financial protection). 
An accompanying web interface provides country-level SHAP summaries for decision support.
Conclusions: An explainable machine learning approach accurately predicts national MIRs and decomposes predictions 
into country-specific health system attributions. While ecological and noncausal by design, the SHAP profiles translate 
population-level associations into actionable hypotheses for prioritizing investments―highlighting, across many 
contexts, radiotherapy capacity and UHC expansion as recurrent levers, and underscoring that higher total health 
spending alone may be insufficient without strategic allocation. Prospective, country-specific evaluations are 
warranted to test whether targeting model-identified drivers improve cancer outcomes.
Key words: cancer outcomes, machine learning, SHAP analysis, health systems, global oncology, universal health 
coverage
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INTRODUCTION

Cancer is a leading cause of morbidity and mortality 
worldwide. Global disparities in access to cancer di-
agnostics and care, along with associated cancer outcomes, 
are immense. 1 Recent evidence from the Global Burden of 
Disease Study 2023 underscores that, as of 2023, there 
were an estimated 18.5 million new cancer cases and 10.4 
million cancer deaths around the world, with >65% of 
these deaths occurring in low- and middle-income coun-
tries. 2 Despite a decline in age-standardized mortality rates 
in many high-income regions, progress elsewhere has been 
limited, and global numbers of cases and deaths are pro-
jected to rise sharply through 2050, especially in resource-
constrained areas. 2 Thus, identifying actionable cancer 
systems factors specific to each country and context is 
needed.

Prior work on pan-cancer ecological findings established 
universal health coverage (UHC) and gross domestic prod-
uct (GDP) per capita as robust, independent predictors of 
cancer outcomes in linear models. 3 However, while classical 
regression provides vital baseline associations, it is con-
strained by assumptions of linearity and does not fully 
account for the nuanced, context-specific interplay be-
tween health system factors and cancer outcomes.

To capture the multifaceted nature of national cancer 
systems, we applied machine learning approaches capable 
of modeling nonlinear and context-dependent relationships 
among health system indicators. Specifically, gradient-
boosting methods such as CatBoost enable the character-
ization of complex interactions between economic, infra-
structural, and policy variables that shape cancer 
outcomes. To enhance the interpretability of these models, 
we incorporated SHapley Additive exPlanations (SHAP), 
which quantify the relative contribution of each input to 
country-specific cancer mortality-to-incidence ratios. This 
framework thus integrates predictive precision with trans-
parency, enabling actionable insights into the health system 
determinants of global cancer outcomes. 4

We sought to move beyond the traditionally ‘black box’ 
machine learning paradigm into one capable of actionable, 
country-tailored insight. Our overarching goal is to translate 
these interpretable, country-specific predictions into a 
practical prioritization of health system levers―guiding 
policymakers toward the highest yield, context-appropriate 
investments to reduce cancer mortality and close equity 
gaps.

MATERIALS AND METHODS 

Data sources and variables

We used pan-cancer mortality-to-incidence ratio (MIR) as 
our primary outcome variable, based on GLOBOCAN 2022. 5 

The MIR represents the proportion of cancer cases that 
result in death, serving as a proxy for cancer care effec-
tiveness. 3 Health system metrics were collected from the 
World Health Organization, the World Bank, United Nations 
agencies, and the Directory of Radiotherapy Centres

(DIRAC). The following health system variables were 
included: health spending as percentage of GDP, physicians 
per 1000 population, nurses and midwives per 1000 pop-
ulation, surgical work force per 1000 population, UHC index 
(a composite measure of health service coverage and 
financial protection), pathology services availability, human 
development index, radiotherapy centers per 1000 popu-
lation, GDP per capita, gender inequality index, and out-of-
pocket expenditure percentage.

Machine learning pipeline and cross-validation

Our machine learning pipeline implemented several 
methodological advances over traditional regression ap-
proaches. We used repeated leave-one-country-out cross-
validation (10 repeats, 1850 total predictions) to ensure 
robust performance estimation and prevent overfitting. 
Cross-validation is a technique that systematically excludes 
portions of data to test model performance on unseen 
cases, while overfitting occurs when a model memorizes 
training data rather than learning generalizable patterns. 
This approach provides unbiased estimates of model per-
formance by systematically excluding each country from 
training and using it as a test case across multiple 
iterations.

Within each cross-validation fold, we implemented a 
rigorous preprocessing pipeline to prevent data leaka-
ge―the inadvertent use of future or test information 
during model training. Missing values were handled using 
CatBoost’s native missing value processing, which treats 
missing values as a separate category during tree con-
struction rather than requiring explicit imputation. This 
approach leverages CatBoost’s ability to learn optimal splits 
for missing data patterns, often outperforming traditional 
imputation methods by preserving the informative nature 
of missingness patterns in health system data.

After handling missing values, we applied variance 
inflation factor-based (VIF) feature selection (threshold = 
10) to address multicollinearity―the presence of highly 
correlated predictor variables that can destabilize model 
interpretability. VIF measures how much the variance of a 
regression coefficient increases due to collinearity, with 
values >10 indicating problematic correlation levels. Fea-
tures with VIF exceeding the threshold were iteratively 
removed, prioritizing the removal of the highest VIF feature 
until all remaining features had acceptable collinearity 
levels.

To ensure transparency in feature selection, we tracked 
feature retention across all cross-validation iterations. VIF-
based filtering demonstrated perfect stability, with all fea-
tures retained in 100% of cross-validation folds (1850/1850 
iterations). This complete retention indicates that the initial 
feature set―comprising GDP per capita, UHC index, 
radiotherapy centers per 1000 population, health spending 
as percentage of GDP, pathology services availability, phy-
sicians per 1000 population, nurses and midwives per 1000 
population, surgical work force per 1000 population, out-
of-pocket expenditure percentage, and gender inequality

Annals of Oncology M. S. Patel et al.

2 https://doi.org/10.1016/j.annonc.2025.11.014 Volume xxx ■ Issue xxx ■ 2025

https://doi.org/10.1016/j.annonc.2025.11.014


index―exhibited acceptable multicollinearity levels (VIF 
<10) across all national contexts. The consistent feature 
stability across diverse country compositions in each cross-
validation fold supports the robustness of these health 
system indicators as independent predictors of cancer MIR.

Model selection and hyperparameter optimization

We selected CatBoost as our primary modeling framework 
due to its superior handling of missing values, categorical 
features, and resistance to overfitting. CatBoost is a 
gradient-boosting algorithm that builds models by itera-
tively combining weak predictors (typically decision trees) 
to create a strong ensemble predictor. For each outer cross-
validation fold, we carried out nested hyperparameter 
optimization using Optuna with 50 trials per fold. Hyper-
parameters are configuration settings that control model 
behavior (such as learning speed and model complexity) 
rather than parameters learned from data. The specific 
hyperparameter ranges, optimization scheme, and full 
software references are provided in Supplementary 
Methods, available at https://doi.org/10.1016/j.annonc. 
2025.11.014. The complete hyperparameter search space 
is detailed in Supplementary Table S1, available at https:// 
doi.org/10.1016/j.annonc.2025.11.014. The optimization 
process used Bayesian optimization with Tree-structured 
Parzen Estimator (TPE) sampling―a probabilistic 
approach that learns from previous trials to efficiently 
explore the hyperparameter space.

Five-fold inner cross-validation with countries as groups 
ensured that hyperparameter selection was based on 
genuine out-of-sample performance. This ensured that all 
data from the same country appears in only one fold, 
preventing information leakage between training and vali-
dation sets. Early stopping (50 rounds) prevented over-
fitting during model training by halting the training process 
when validation performance on a held-out fold stopped 
improving. All random seeds were fixed to ensure repro-
ducibility across the 10 repeated cross-validation cycles.

SHAP analysis for model interpretability

SHAP analysis was selected over alternative explainability 
methods due to its theoretical foundation and unique 
properties. 6 SHAP is a method for explaining individual 
predictions by quantifying each feature’s contribution to 
the prediction. Unlike permutation importance or linear 
coefficients, SHAP value, which are model-derived metrics 
quantifying each factor’s contribution to cancer outcomes, 
satisfy mathematical axioms ensuring that feature contri-
butions sum exactly to the difference between each pre-
diction and the model’s baseline―the average prediction 
the model would make without any input features. This 
enables precise quantification of how much each health 
system factor contributes to a country’s predicted cancer 
mortality, providing the foundation for evidence-based 
policy recommendations.

To generate interpretable predictions, we made use of 
the SHAP framework, which brings unprecedented

granularity, revealing substantial heterogeneity. For some 
countries, radiotherapy infrastructure may eclipse eco-
nomic indicators in explanatory weight, while for others, 
work force density or out-of-pocket costs emerge as 
dominant barriers. This level of detail enables health poli-
cymakers to prioritize interventions not just generically, but 
in a data-driven, context-specific manner, targeting the 
precise bottlenecks limiting their national cancer control 
efforts.

SHAP values were computed for each country prediction 
using TreeExplainer, 7 which provides exact calculations for 
tree-based models like CatBoost. TreeExplainer leverages 
the tree structure to compute SHAP values efficiently 
without approximation. We aggregated SHAP values across 
repeated predictions to generate stable feature importance 
rankings and country-specific explanations. Force plots 
visualized individual country predictions, showing how each 
health system factor pushed the prediction above or below 
the global baseline.

Statistical analysis and performance evaluation

Model performance was evaluated using multiple metrics 
calculated at the country level by averaging predictions 
across the 10 repeats. Primary metrics included R 2 (the 
proportion of variance in outcomes explained by the 
model), root mean squared error (RMSE, the square root of 
average squared prediction errors), and mean absolute 
error (the average absolute difference between predicted 
and actual values). Bootstrap resampling (2000 iterations) 
generated 95% confidence intervals (CIs) for all perfor-
mance metrics. Bootstrap resampling involves repeatedly 
sampling with replacement from the original data to esti-
mate the uncertainty around our performance statistics. 

Statistical significance was assessed using Pearson cor-
relation between actual and predicted values across 
countries. Feature selection stability was quantified by 
calculating the percentage of cross-validation folds in which 
each variable was selected after VIF filtering.

Methodological innovations and clinical translation

By embedding SHAP analysis within CatBoost, our study 
directly addresses major limitations of prior ecological 
research: (i) it provides a defensible, axiomatic basis for 
feature attribution grounded in game theory, mathematical 
principles ensuring fair allocation of contributions among 
predictors; (ii) it supports scenario modeling to estimate 
expected gains from policy shifts (e.g. scaling up radio-
therapy access); and (iii) it paves the way for integrating 
additional dimensions such as within-country inequities 
across rural—urban divides and insurance coverage gaps, 
disparities that may rival or exceed between-country dif-
ferences in magnitude and require targeted subnational 
interventions, as well as policy implementation tracking 
and cost-effectiveness analyses. Translational value refers 
to the practical application of research findings to real-
world health care policy and practice. Taken together, this 
approach provides an interpretable set of associations to
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inform health system strengthening and generate hypoth-
eses for future causal research.

All analyses were conducted in Python using scikit-learn, 8 

CatBoost, 9 Optuna, 10 statsmodels, 11 and SHAP 4 libraries with 
parallelization using joblib 12 for computational efficiency and 
tqdm 13 for utility. All data manipulation was handled by 
pandas 14 and numpy 15 libraries. All plots were created using 
the matplotlib, 16 seaborn, 17 and scipy 18 libraries. The 
computational environment and model configuration pa-
rameters are summarized in Supplementary Table S2, avail-
able at https://doi.org/10.1016/j.annonc.2025.11.014.

Ethics approval

This study did not require ethical approval given the use of 
publicly available data that does not constitute patient 
health information or human subject research.

RESULTS

The machine learning model demonstrated robust predic-
tive performance with R 2 = 0.852 (95% CI 0.801-0.891) and 
RMSE = 0.057 (95% CI 0.050-0.064) (Figure 1). The corre-
lation between predicted and actual cancer mortality ratios 
was highly significant (r = 0.923, P = 8.30 × 10 − 78 ). 

Global feature performances are presented in Figure 2. 
However, the key advancement lies in SHAP’s ability to 
provide country-specific policy guidance. For each nation, 
SHAP values reveal exactly which health system factors 
most contribute to higher or lower cancer mortality rates. 
These are visualized in Supplementary Figure S1, available 
at https://doi.org/10.1016/j.annonc.2025.11.014 (heatmap 
figure). We have made country-specific estimates available 
in a usable web interface. 19

SHAP values, derived from repeated model validation, 
reveal highly specific patterns in how health system factors 
affect cancer outcomes for each country. A negative SHAP 
value corresponds to a lower MIR, whereas a positive SHAP 
value corresponds to a higher MIR. In Turkey, the analysis 
shows that the current number of radiotherapy centers per 
1000 people is a major determinant of cancer mortality 
relative to incidence, with a mean SHAP value of — 
0.0337. 20,21 This suggests that policies designed to strate-
gically increase radiotherapy access may be associated with 
significant improvements in outcomes. On the other hand, 
Turkey’s positive SHAP value for health spending as a per-
centage of GDP (+0.0258) indicates that higher spending 
has not translated into better MIR ratios, highlighting the 
need to reassess how current resources are deployed 
rather than simply increasing budgets.

In Brazil, the UHC index holds the greatest impact among 
evaluated factors, with a SHAP value of − 0.0230. 22,23 This 
highlights universal health coverage as a priority area for 
policy consideration in Brazil, given its strong association 
with MIR in our ecological model. However, intervention 
studies would be required to establish causality for 
outcome improvements. Pathology services, with a modest 
positive SHAP value (+0.0093), may not substantially limit

Brazil’s outcomes, potentially directing policy attention 
toward broader coverage solutions.

Poland’s strengths are rooted in radiotherapy center 
density, as evidenced by a SHAP value of − 0.0246. 24 This 
suggests that recent efforts at the national level to 
strengthen health insurance coverage and to support service 
access may have led to more pronounced gains than general 
health spending, which shows a small, more negligible pos-
itive effect (+0.0029). For Japanese policymakers, the data 
portray an altogether different picture: all assessed health 
system attributes correlate only with improvement in cancer 
outcomes. 25,26 The analysis reveals that radiotherapy center 
density (− 0.0579) and nurse and midwife density (− 0.0539) 
are the strongest correlates of Japan’s low MIR. 27 This sug-
gests an association between targeted infrastructure in-
vestments in cancer treatment facilities and health care work 
force development and Japan’s cancer outcomes. The 
negative SHAP values across all predictors suggest these 
factors are working in Japan’s favor by decreasing MIR. 
Therefore, Japan’s strategy should prioritize preserving and 
enhancing these effective drivers.

In Malaysia, the analysis highlights GDP per capita as a 
key lever, with a negative SHAP value of − 0.0256. 28,29 This 
supports growth-focused policies for long-term cancer 
control. However, higher health spending as a share of GDP 
carries a positive effect (+0.0158), suggesting a need for 
better strategic use of available resources, possibly direct-
ing funds toward the most impactful technologies or ser-
vices rather than across-the-board budget increases.

In Ghana, SHAP analysis reveals that the UHC index has a 
strong positive SHAP value (+0.0205) in relation to cancer 
MIR, indicating that current gaps in insurance coverage or 
service accessibility are major contributors to poorer cancer 
outcomes. 30 Conversely, the availability of nurses and mid-
wives per 1000 people has a negative SHAP value (− 0.0092), 
suggesting that increases in nursing and midwifery work force 
are associated with small but meaningful improvements in 
cancer outcomes.Together, these findings suggest that Ghana 
should prioritize health policies that advance UHC as their 
primary lever for improving cancer survival, while also 
recognizing the continued importance of investing in essential 
frontline health workers to support long-term gains. 

Thailand’s SHAP profile also emphasizes the value of 
broader UHC, with a strong negative impact (− 0.0351). 31 The 
slightly positive association between health spending as a 
percentage of GDP and MIR (+0.073) mirrors trends seen in 
other countries; it indicates the importance not just of how 
much is spent, but how efficiently resources are directed.

In China, SHAP analysis highlighted GDP per capita 
(− 0.0245) and UHC index (− 0.0221) as the dominant nega-
tive drivers of mortality-to-incidence ratio, indicating that 
continued economic growth and further expansion of uni-
versal health coverage synergistically contribute to reductions 
in cancer mortality. By contrast, out-of-pocket health expen-
diture exhibited a substantial positive SHAP value (0.0225), 
suggesting that high direct costs for patients remain a critical 
barrier to optimal cancer outcomes, even amidst national 
improvements in health financing and access. These findings
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underscore that while China’s rapid health system develop-
ment is yielding important gains in cancer control, disparities 
in financial protection and coverage persist, warranting 
intensified policy focus on reducing out-of-pocket expendi-
tures and further strengthening UHC implementation to 
maximize health system impact. 32

We also include a dendrogram depicting the results of 
agglomerative hierarchical clustering on 185 countries, 
providing insight into countries that exhibit similar patterns 
in their SHAP values (Supplementary Figure S2, available at 
https://doi.org/10.1016/j.annonc.2025.11.014). Together, 
these detailed country profiles arm policymakers with the 
evidence to design precise, high-impact interventions, 
whether that means investing in infrastructure, expanding 
coverage, or reorienting spending to maximize reductions 
in cancer mortality.

Across diverse national contexts, two patterns emerge as 
consistent policy levers: radiotherapy infrastructure and UHC 
expansion demonstrate robust negative associations with 
cancer mortality ratios in most countries analyzed. In contrast, 
health spending as a percentage of GDP frequently shows 
positive SHAP values, as observed in Turkey (+0.0258), 
Malaysia (+0.0158), and Thailand (+0.073), suggesting that 
higher health expenditure alone does not guarantee 
improved outcomes. These findings underscore that strategic 
allocation of resources toward high-impact interventions, 
rather than simply increasing total health budgets, represents 
the more actionable pathway for policymakers seeking to 
reduce cancer mortality. 3 Country-specific predictions and 
SHAP attributions for countries with the highest mortality-to-
incidence ratios are detailed in Supplementary Table S3A, 
available at https://doi.org/10.1016/j.annonc.2025.11.014.

Conversely, countries with the lowest predicted mortality-to-
incidence ratios and their corresponding SHAP drivers are 
presented in Supplementary Table S3B, available at https:// 
doi.org/10.1016/j.annonc.2025.11.014.

Figure 3 demonstrates the heterogeneity in feature im-
pacts across countries, with the same health system factor 
showing positive contributions to cancer mortality in some 
nations while reducing it in others.

DISCUSSION

This approach represents a paradigm shift from describing 
associations to providing actionable intelligence. While 
previous linear analysis established that UHC and GDP per 
capita matter globally, SHAP analysis reveals the specific 
magnitude of their importance for each country and iden-
tifies additional factors that may be more impactful in 
specific national contexts. For instance, while radiotherapy 
capacity ranks second globally by the SHAP analysis, it may 
be the primary driver of poor outcomes in specific countries 
with adequate number of facilities but insufficient cancer 
infrastructure.

The model’s strong performance across diverse global 
contexts (185 countries spanning all income levels) dem-
onstrates robustness and generalizability. The consistent 
feature selection across cross-validation runs confirms 
model stability and reliability of the SHAP attributions. 

While this analysis aggregates pan-cancer outcomes to 
provide broad health system insights, the relative impor-
tance of these drivers likely varies substantially by cancer 
type. For cancers highly responsive to radiotherapy, such as 
breast, cervical, and certain head and neck malignancies,

Figure 1. Model performance for predicting country-level average mortality-to-incidence ratio (MIR) for all-age, mixed-sex pan-cancer cases. The scatter plot 
compares actual versus predicted MIRs, with each point representing a country and error bars indicating 95% confidence intervals. The solid line shows the 
regression fit, the dashed line denotes perfect prediction (y = x), and the model achieves R 2 = 0.852 [95% confidence interval (CI) 0.801-0.891], root mean squared 
error (RMSE) = 0.057 (95% CI 0.050-0.064), P < 0.001.
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radiotherapy infrastructure may exert a disproportionately 
large impact on outcomes. 33 Conversely, for cancers where 
systemic therapy predominates (such as hematologic ma-
lignancies) or where early detection is critical (such as 
colorectal cancer), factors like pathology services avail-
ability and screening program implementation may emerge 
as more influential drivers of the mortality-to-incidence 
ratio. 34 Similarly, the impact of UHC expansion may differ 
between cancers with established screening programs 
(breast, cervical, colorectal, and lung) versus those without 
guideline-recommended screening. For instance, cervical 
cancer outcomes in low-resource settings are particularly 
sensitive to both screening access and treatment avail-
ability, while blood cancer outcomes may be less associated 
with changes in radiotherapy infrastructure. 35 Future work 
should employ cancer-specific models to identify which 
health system levers provide the greatest return on in-
vestment for particular malignancies, enabling even more 
targeted policy recommendations.

Implications for practice and policy

Our findings provide several actionable insights for clini-
cians and policymakers working to strengthen national 
cancer control. Firstly, radiotherapy infrastructure and UHC 
indices emerge consistently as high-yield investments, 
demonstrating robust associations with improved 
mortality-to-incidence ratios across a range of country 
contexts. Secondly, the data highlight that increased health 
spending, while necessary, is insufficient to drive outcomes 
unless coupled with strategic and efficient resource allo-
cation; simply increasing budgets without targeting im-
pactful interventions may deliver only marginal gains.

Thirdly, the interpretability of country-specific SHAP profiles 
generated by our machine learning models offers new 
potential for directly informing national cancer control 
strategies. Such tools enable policymakers to identify and 
prioritize interventions tailored to their unique health sys-
tem bottlenecks and strengths, moving beyond generic 
recommendations toward precision public health ap-
proaches. Ultimately, adoption of explainable artificial in-
telligence (AI) and country-level modeling can help focus 
investments in resource-constrained settings, ensuring that 
expansions in infrastructure, work force, and coverage yield 
tangible improvements in cancer survival.

Future research directions

While this study leverages country-level data to reveal 
actionable policy levers for cancer system strengthening, 
important opportunities remain for further investigation. 
Future work should focus on subnational analyses to dissect 
regional disparities, illuminate urban—rural divides, and guide 
more granular policymaking. Additionally, site-specific 
modeling is needed to determine which health system fac-
tors most strongly influence outcomes for individual cancer 
types, enabling highly targeted intervention design. Such ef-
forts will require the continued development and harmoniza-
tion of high-quality, regionally representative cancer registry 
and health system data to enable robust and context-specific 
modeling. Finally, the integration of cost-effectiveness ana-
lyses will be essential to ensure that recommended in-
terventions not only improve outcomes but also maximize 
health system efficiency and sustainability. As such, the com-
bination of explainable AI, high-resolution data, and economic

Figure 2. Global feature importance based on mean absolute SHAP values, revealing gross domestic product (GDP) per capita (22.5%), radiotherapy centers per 
population (15.4%), and universal health coverage (UHC) index (12.9%) as the most impactful factors worldwide. Bars indicate each predictor’s average impact on 
model output for pan-cancer mortality-to-incidence ratio prediction, with health spending, work force, and access indices contributing less.
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evaluation represents an essential next step to advance pre-
cision cancer policy and deepen the global evidence base.

Limitations

Important limitations must be considered when interpreting 
these findings. Firstly, the ecological study design relies on 
national-level aggregated data, which precludes inferences 
about individual-level relationships and is subject to ecolog-
ical fallacy. MIR is affected by registry completeness, inci-
dence ascertainment, and diagnostic infrastructure, and may 
not exclusively reflect cancer care effectiveness. Policy inter-
pretation should consider these factors, especially in lower 
resource settings. SHAP values, while mathematically 
rigorous, represent model-based feature attributions rather 
than causal effects.These attributions quantify each variable’s 
contribution to predictions within our model framework but 
cannot establish whether intervening in these factors would 
produce the predicted mortality reductions. Country-specific 
interventional studies or quasi-experimental designs are 
needed to validate causal relationships before implementing 
large-scale policy changes based solely on these associations. 
Additionally, unmeasured confounders at the national level, 
temporal dynamics, and implementation contexts may sub-
stantially modify the actual impact of health system in-
terventions. Therefore, our findings should be interpreted as 
generating hypotheses and identifying priority areas for 
further investigation rather than definitive evidence for spe-
cific policy interventions.

The ecological design introduces several specific sour-
ces of potential bias that warrant careful consideration. 
Unmeasured confounders at the national level―including 
cultural attitudes toward health care-seeking behavior, 
governance quality indicators such as corruption indices, 
and political stability―may significantly influence the 
model’s SHAP attributions and could bias interpretations

of health system impacts. As such, our findings should 
inform the prioritization of pilot interventions aimed at 
validating high-impact drivers identified by the model. 
Rigorous evaluation of such interventions will be critical 
for confirming their effectiveness and ensuring that 
resource allocation decisions are evidence-based. For 
instance, countries with similar UHC indices but divergent 
governance efficiency or institutional capacity could 
demonstrate markedly different cancer outcomes, which 
the model may attribute entirely to measured variables 
rather than these unmeasured contextual factors. Addi-
tionally, subnational disparities in health care access, 
infrastructure distribution, and cancer registry coverage 
within countries are not captured in our national-level 
analysis, potentially masking substantial within-country 
heterogeneity that could be as large or larger than 
between-country differences. Data quality represents 
another critical limitation, particularly regarding GLOBO-
CAN estimates in low- and middle-income countries 
where cancer registry systems may be incomplete, lead-
ing to potential under-reporting of both incidence and 
mortality. Registry completeness varies substantially 
across countries, with some nations relying on modeled 
estimates rather than population-based data, which may 
introduce systematic biases in MIR calculations. Future 
studies should incorporate sensitivity analyses that strat-
ify results by data quality metrics, exclude countries with 
low registry completeness scores, or weight observations 
by data quality indicators to assess the robustness of 
findings to these measurement limitations.

Future work should employ causal inference methods, 
such as difference-in-differences analyses of policy imple-
mentations, instrumental variable approaches, or propensity 
score methods applied to longitudinal data, to move beyond 
these ecological associations toward causal understanding 
of health system interventions on cancer mortality.

SHAP value (impact on MIR prediction)
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Figure 3. SHAP summary (beeswarm) plot showing the relative impact of health system predictors on country-level cancer mortality-to-incidence ratio (MIR) 
predictions. Each point is a country, with color encoding the feature value (blue: low, pink: high). Points to the right have positive SHAP values and push MIR higher; 
points to the left have negative SHAP values and lower MIR. Predictors are ordered by overall influence, with gross domestic product (GDP) per capita, universal 
health coverage (UHC) index, and radiotherapy centers per population exerting the largest effects. The distribution within each row depicts the magnitude, direction, 
and variability of each feature’s contribution, revealing how health system characteristics shape national cancer burden estimates across 185 countries.
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Conclusions

This machine learning approach with explainable AI trans-
forms global health system research from descriptive to 
prescriptive, enabling evidence-based, country-specific 
cancer system strengthening. As the global cancer burden 
continues to grow, particularly in low- and middle-income 
countries, such personalized policy guidance becomes 
increasingly critical for optimizing limited resources and 
maximizing population health impact.
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