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Background: Global inequities in access to cancer diagnostics and treatment contribute to wide variation in cancer
mortality-to-incidence ratios (MIRs), a proxy for survival. We aimed to develop an interpretable machine learning
framework to quantify country-specific health system contributors to MIR and inform policy prioritization.
Materials and methods: We assembled national MIRs from GLOBOCAN 2022 for 185 countries and health system
indicators from multilateral sources, including gross domestic product (GDP) per capita, universal health coverage
(UHC) index, radiotherapy centers per population, health spending (%GDP), out-of-pocket expenditure, work force
densities (physicians; nurses/midwives; surgical work force), pathology availability, Human Development Index, and
gender inequality index. A CatBoost gradient-boosting model was trained with repeated leave-one-country-out
cross-validation (10 repeats; 1850 predictions). Nested hyperparameter optimization and strict leakage control
were used. Model interpretability employed SHapley Additive exPlanations (SHAP; TreeExplainer) to generate global
and country-level feature attributions. SHAP values, model-derived metrics quantifying each factor’s contribution to
cancer outcomes, were generated. Performance metrics included R? root mean squared error (RMSE), mean
absolute error, and Pearson correlation; uncertainty was estimated by bootstrap resampling.

Results: The model showed strong out-of-sample performance [R®> = 0.852, 95% confidence interval (Cl) 0.801-0.891;
RMSE 0.057, 95% Cl 0.050-0.064]; correlation between predicted and observed MIRs was r = 0.923 (P = 8.30 x 10 %)
Global SHAP contributions ranked GDP per capita (22.5%), radiotherapy centers per population (15.4%), and UHC index
(12.9%) as the leading determinants. Country-specific SHAP profiles revealed substantial heterogeneity in dominant
drivers across settings, enabling tailored policy levers (e.g. infrastructure, coverage expansion, or financial protection).
An accompanying web interface provides country-level SHAP summaries for decision support.

Conclusions: An explainable machine learning approach accurately predicts national MIRs and decomposes predictions
into country-specific health system attributions. While ecological and noncausal by design, the SHAP profiles translate
population-level associations into actionable hypotheses for prioritizing investments—highlighting, across many
contexts, radiotherapy capacity and UHC expansion as recurrent levers, and underscoring that higher total health
spending alone may be insufficient without strategic allocation. Prospective, country-specific evaluations are
warranted to test whether targeting model-identified drivers improve cancer outcomes.

Key words: cancer outcomes, machine learning, SHAP analysis, health systems, global oncology, universal health
coverage
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INTRODUCTION

Cancer is a leading cause of morbidity and mortality
worldwide. Global disparities in access to cancer di-
agnostics and care, along with associated cancer outcomes,
are immense." Recent evidence from the Global Burden of
Disease Study 2023 underscores that, as of 2023, there
were an estimated 18.5 million new cancer cases and 10.4
million cancer deaths around the world, with >65% of
these deaths occurring in low- and middle-income coun-
tries.” Despite a decline in age-standardized mortality rates
in many high-income regions, progress elsewhere has been
limited, and global numbers of cases and deaths are pro-
jected to rise sharply through 2050, especially in resource-
constrained areas.” Thus, identifying actionable cancer
systems factors specific to each country and context is
needed.

Prior work on pan-cancer ecological findings established
universal health coverage (UHC) and gross domestic prod-
uct (GDP) per capita as robust, independent predictors of
cancer outcomes in linear models.®> However, while classical
regression provides vital baseline associations, it is con-
strained by assumptions of linearity and does not fully
account for the nuanced, context-specific interplay be-
tween health system factors and cancer outcomes.

To capture the multifaceted nature of national cancer
systems, we applied machine learning approaches capable
of modeling nonlinear and context-dependent relationships
among health system indicators. Specifically, gradient-
boosting methods such as CatBoost enable the character-
ization of complex interactions between economic, infra-
structural, and policy variables that shape cancer
outcomes. To enhance the interpretability of these models,
we incorporated SHapley Additive exPlanations (SHAP),
which quantify the relative contribution of each input to
country-specific cancer mortality-to-incidence ratios. This
framework thus integrates predictive precision with trans-
parency, enabling actionable insights into the health system
determinants of global cancer outcomes.”

We sought to move beyond the traditionally ‘black box’
machine learning paradigm into one capable of actionable,
country-tailored insight. Our overarching goal is to translate
these interpretable, country-specific predictions into a
practical prioritization of health system levers—guiding
policymakers toward the highest yield, context-appropriate
investments to reduce cancer mortality and close equity

gaps.

MATERIALS AND METHODS

Data sources and variables

We used pan-cancer mortality-to-incidence ratio (MIR) as
our primary outcome variable, based on GLOBOCAN 2022.°
The MIR represents the proportion of cancer cases that
result in death, serving as a proxy for cancer care effec-
tiveness.> Health system metrics were collected from the
World Health Organization, the World Bank, United Nations
agencies, and the Directory of Radiotherapy Centres
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(DIRAC). The following health system variables were
included: health spending as percentage of GDP, physicians
per 1000 population, nurses and midwives per 1000 pop-
ulation, surgical work force per 1000 population, UHC index
(a composite measure of health service coverage and
financial protection), pathology services availability, human
development index, radiotherapy centers per 1000 popu-
lation, GDP per capita, gender inequality index, and out-of-
pocket expenditure percentage.

Machine learning pipeline and cross-validation

Our machine learning pipeline implemented several
methodological advances over traditional regression ap-
proaches. We used repeated leave-one-country-out cross-
validation (10 repeats, 1850 total predictions) to ensure
robust performance estimation and prevent overfitting.
Cross-validation is a technique that systematically excludes
portions of data to test model performance on unseen
cases, while overfitting occurs when a model memorizes
training data rather than learning generalizable patterns.
This approach provides unbiased estimates of model per-
formance by systematically excluding each country from
training and using it as a test case across multiple
iterations.

Within each cross-validation fold, we implemented a
rigorous preprocessing pipeline to prevent data leaka-
ge—the inadvertent use of future or test information
during model training. Missing values were handled using
CatBoost’s native missing value processing, which treats
missing values as a separate category during tree con-
struction rather than requiring explicit imputation. This
approach leverages CatBoost’s ability to learn optimal splits
for missing data patterns, often outperforming traditional
imputation methods by preserving the informative nature
of missingness patterns in health system data.

After handling missing values, we applied variance
inflation factor-based (VIF) feature selection (threshold =
10) to address multicollinearity—the presence of highly
correlated predictor variables that can destabilize model
interpretability. VIF measures how much the variance of a
regression coefficient increases due to collinearity, with
values >10 indicating problematic correlation levels. Fea-
tures with VIF exceeding the threshold were iteratively
removed, prioritizing the removal of the highest VIF feature
until all remaining features had acceptable collinearity
levels.

To ensure transparency in feature selection, we tracked
feature retention across all cross-validation iterations. VIF-
based filtering demonstrated perfect stability, with all fea-
tures retained in 100% of cross-validation folds (1850/1850
iterations). This complete retention indicates that the initial
feature set—comprising GDP per capita, UHC index,
radiotherapy centers per 1000 population, health spending
as percentage of GDP, pathology services availability, phy-
sicians per 1000 population, nurses and midwives per 1000
population, surgical work force per 1000 population, out-
of-pocket expenditure percentage, and gender inequality

Volume xxx m Issue xxx m 2025


https://doi.org/10.1016/j.annonc.2025.11.014

M. S. Patel et al.

index—exhibited acceptable multicollinearity levels (VIF
<10) across all national contexts. The consistent feature
stability across diverse country compositions in each cross-
validation fold supports the robustness of these health
system indicators as independent predictors of cancer MIR.

Model selection and hyperparameter optimization

We selected CatBoost as our primary modeling framework
due to its superior handling of missing values, categorical
features, and resistance to overfitting. CatBoost is a
gradient-boosting algorithm that builds models by itera-
tively combining weak predictors (typically decision trees)
to create a strong ensemble predictor. For each outer cross-
validation fold, we carried out nested hyperparameter
optimization using Optuna with 50 trials per fold. Hyper-
parameters are configuration settings that control model
behavior (such as learning speed and model complexity)
rather than parameters learned from data. The specific
hyperparameter ranges, optimization scheme, and full
software references are provided in Supplementary
Methods, available at https://doi.org/10.1016/j.annonc.
2025.11.014. The complete hyperparameter search space
is detailed in Supplementary Table S1, available at https://
doi.org/10.1016/j.annonc.2025.11.014. The optimization
process used Bayesian optimization with Tree-structured
Parzen  Estimator (TPE) sampling—a probabilistic
approach that learns from previous trials to efficiently
explore the hyperparameter space.

Five-fold inner cross-validation with countries as groups
ensured that hyperparameter selection was based on
genuine out-of-sample performance. This ensured that all
data from the same country appears in only one fold,
preventing information leakage between training and vali-
dation sets. Early stopping (50 rounds) prevented over-
fitting during model training by halting the training process
when validation performance on a held-out fold stopped
improving. All random seeds were fixed to ensure repro-
ducibility across the 10 repeated cross-validation cycles.

SHAP analysis for model interpretability

SHAP analysis was selected over alternative explainability
methods due to its theoretical foundation and unique
properties.® SHAP is a method for explaining individual
predictions by quantifying each feature’s contribution to
the prediction. Unlike permutation importance or linear
coefficients, SHAP value, which are model-derived metrics
quantifying each factor’s contribution to cancer outcomes,
satisfy mathematical axioms ensuring that feature contri-
butions sum exactly to the difference between each pre-
diction and the model’s baseline—the average prediction
the model would make without any input features. This
enables precise quantification of how much each health
system factor contributes to a country’s predicted cancer
mortality, providing the foundation for evidence-based
policy recommendations.

To generate interpretable predictions, we made use of
the SHAP framework, which brings unprecedented
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granularity, revealing substantial heterogeneity. For some
countries, radiotherapy infrastructure may eclipse eco-
nomic indicators in explanatory weight, while for others,
work force density or out-of-pocket costs emerge as
dominant barriers. This level of detail enables health poli-
cymakers to prioritize interventions not just generically, but
in a data-driven, context-specific manner, targeting the
precise bottlenecks limiting their national cancer control
efforts.

SHAP values were computed for each country prediction
using TreeExplainer,” which provides exact calculations for
tree-based models like CatBoost. TreeExplainer leverages
the tree structure to compute SHAP values efficiently
without approximation. We aggregated SHAP values across
repeated predictions to generate stable feature importance
rankings and country-specific explanations. Force plots
visualized individual country predictions, showing how each
health system factor pushed the prediction above or below
the global baseline.

Statistical analysis and performance evaluation

Model performance was evaluated using multiple metrics
calculated at the country level by averaging predictions
across the 10 repeats. Primary metrics included R? (the
proportion of variance in outcomes explained by the
model), root mean squared error (RMSE, the square root of
average squared prediction errors), and mean absolute
error (the average absolute difference between predicted
and actual values). Bootstrap resampling (2000 iterations)
generated 95% confidence intervals (Cls) for all perfor-
mance metrics. Bootstrap resampling involves repeatedly
sampling with replacement from the original data to esti-
mate the uncertainty around our performance statistics.

Statistical significance was assessed using Pearson cor-
relation between actual and predicted values across
countries. Feature selection stability was quantified by
calculating the percentage of cross-validation folds in which
each variable was selected after VIF filtering.

Methodological innovations and clinical translation

By embedding SHAP analysis within CatBoost, our study
directly addresses major limitations of prior ecological
research: (i) it provides a defensible, axiomatic basis for
feature attribution grounded in game theory, mathematical
principles ensuring fair allocation of contributions among
predictors; (ii) it supports scenario modeling to estimate
expected gains from policy shifts (e.g. scaling up radio-
therapy access); and (iii) it paves the way for integrating
additional dimensions such as within-country inequities
across rural—urban divides and insurance coverage gaps,
disparities that may rival or exceed between-country dif-
ferences in magnitude and require targeted subnational
interventions, as well as policy implementation tracking
and cost-effectiveness analyses. Translational value refers
to the practical application of research findings to real-
world health care policy and practice. Taken together, this
approach provides an interpretable set of associations to
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inform health system strengthening and generate hypoth-
eses for future causal research.

All analyses were conducted in Python using scikit-learn,®
CatBoost,” Optuna,'” statsmodels,™* and SHAP* libraries with
parallelization using joblib™* for computational efficiency and
tqdm™® for utility. All data manipulation was handled by
pandas™* and numpy® libraries. All plots were created using
the matplotlib,'® seaborn,”” and scipy*® libraries. The
computational environment and model configuration pa-
rameters are summarized in Supplementary Table S2, avail-
able at https://doi.org/10.1016/j.annonc.2025.11.014.

Ethics approval

This study did not require ethical approval given the use of
publicly available data that does not constitute patient
health information or human subject research.

RESULTS

The machine learning model demonstrated robust predic-
tive performance with R*> = 0.852 (95% Cl 0.801-0.891) and
RMSE = 0.057 (95% CI 0.050-0.064) (Figure 1). The corre-
lation between predicted and actual cancer mortality ratios
was highly significant (r = 0.923, P = 8.30 x 10" ’%).

Global feature performances are presented in Figure 2.
However, the key advancement lies in SHAP’s ability to
provide country-specific policy guidance. For each nation,
SHAP values reveal exactly which health system factors
most contribute to higher or lower cancer mortality rates.
These are visualized in Supplementary Figure S1, available
at https://doi.org/10.1016/j.annonc.2025.11.014 (heatmap
figure). We have made country-specific estimates available
in a usable web interface.*

SHAP values, derived from repeated model validation,
reveal highly specific patterns in how health system factors
affect cancer outcomes for each country. A negative SHAP
value corresponds to a lower MIR, whereas a positive SHAP
value corresponds to a higher MIR. In Turkey, the analysis
shows that the current number of radiotherapy centers per
1000 people is a major determinant of cancer mortality
relative to incidence, with a mean SHAP value of —
0.0337.%%%" This suggests that policies designed to strate-
gically increase radiotherapy access may be associated with
significant improvements in outcomes. On the other hand,
Turkey’s positive SHAP value for health spending as a per-
centage of GDP (40.0258) indicates that higher spending
has not translated into better MIR ratios, highlighting the
need to reassess how current resources are deployed
rather than simply increasing budgets.

In Brazil, the UHC index holds the greatest impact among
evaluated factors, with a SHAP value of —0.0230.2%%3 This
highlights universal health coverage as a priority area for
policy consideration in Brazil, given its strong association
with MIR in our ecological model. However, intervention
studies would be required to establish causality for
outcome improvements. Pathology services, with a modest
positive SHAP value (40.0093), may not substantially limit
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Brazil's outcomes, potentially directing policy attention
toward broader coverage solutions.

Poland’s strengths are rooted in radiotherapy center
density, as evidenced by a SHAP value of —0.0246.>* This
suggests that recent efforts at the national level to
strengthen health insurance coverage and to support service
access may have led to more pronounced gains than general
health spending, which shows a small, more negligible pos-
itive effect (+0.0029). For Japanese policymakers, the data
portray an altogether different picture: all assessed health
system attributes correlate only with improvement in cancer
outcomes.”>*® The analysis reveals that radiotherapy center
density (—0.0579) and nurse and midwife density (—0.0539)
are the strongest correlates of Japan’s low MIR.?” This sug-
gests an association between targeted infrastructure in-
vestmentsin cancer treatment facilities and health care work
force development and Japan’s cancer outcomes. The
negative SHAP values across all predictors suggest these
factors are working in Japan’s favor by decreasing MIR.
Therefore, Japan’s strategy should prioritize preserving and
enhancing these effective drivers.

In Malaysia, the analysis highlights GDP per capita as a
key lever, with a negative SHAP value of —0.0256.%%%° This
supports growth-focused policies for long-term cancer
control. However, higher health spending as a share of GDP
carries a positive effect (+0.0158), suggesting a need for
better strategic use of available resources, possibly direct-
ing funds toward the most impactful technologies or ser-
vices rather than across-the-board budget increases.

In Ghana, SHAP analysis reveals that the UHC index has a
strong positive SHAP value (+0.0205) in relation to cancer
MIR, indicating that current gaps in insurance coverage or
service accessibility are major contributors to poorer cancer
outcomes.>® Conversely, the availability of nurses and mid-
wives per 1000 people has a negative SHAP value (—0.0092),
suggesting that increases in nursing and midwifery work force
are associated with small but meaningful improvements in
cancer outcomes. Together, these findings suggest that Ghana
should prioritize health policies that advance UHC as their
primary lever for improving cancer survival, while also
recognizing the continued importance of investing in essential
frontline health workers to support long-term gains.

Thailand’s SHAP profile also emphasizes the value of
broader UHC, with a strong negative impact (—0.0351).>* The
slightly positive association between health spending as a
percentage of GDP and MIR (+0.073) mirrors trends seen in
other countries; it indicates the importance not just of how
much is spent, but how efficiently resources are directed.

In China, SHAP analysis highlighted GDP per capita
(—0.0245) and UHC index (—0.0221) as the dominant nega-
tive drivers of mortality-to-incidence ratio, indicating that
continued economic growth and further expansion of uni-
versal health coverage synergistically contribute to reductions
in cancer mortality. By contrast, out-of-pocket health expen-
diture exhibited a substantial positive SHAP value (0.0225),
suggesting that high direct costs for patients remain a critical
barrier to optimal cancer outcomes, even amidst national
improvements in health financing and access. These findings
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Figure 1. Model performance for predicting country-level average mortality-to-incidence ratio (MIR) for all-age, mixed-sex pan-cancer cases. The scatter plot
compares actual versus predicted MIRs, with each point representing a country and error bars indicating 95% confidence intervals. The solid line shows the
regression fit, the dashed line denotes perfect prediction (y = x), and the model achieves R? = 0.852 [95% confidence interval (Cl) 0.801-0.891], root mean squared

error (RMSE) = 0.057 (95% Cl 0.050-0.064), P < 0.001.

underscore that while China’s rapid health system develop-
ment is yielding important gains in cancer control, disparities
in financial protection and coverage persist, warranting
intensified policy focus on reducing out-of-pocket expendi-
tures and further strengthening UHC implementation to
maximize health system impact.*?

We also include a dendrogram depicting the results of
agglomerative hierarchical clustering on 185 countries,
providing insight into countries that exhibit similar patterns
in their SHAP values (Supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2025.11.014). Together,
these detailed country profiles arm policymakers with the
evidence to design precise, high-impact interventions,
whether that means investing in infrastructure, expanding
coverage, or reorienting spending to maximize reductions
in cancer mortality.

Across diverse national contexts, two patterns emerge as
consistent policy levers: radiotherapy infrastructure and UHC
expansion demonstrate robust negative associations with
cancer mortality ratios in most countries analyzed. In contrast,
health spending as a percentage of GDP frequently shows
positive SHAP values, as observed in Turkey (+0.0258),
Malaysia (+0.0158), and Thailand (-+0.073), suggesting that
higher health expenditure alone does not guarantee
improved outcomes. These findings underscore that strategic
allocation of resources toward high-impact interventions,
rather than simply increasing total health budgets, represents
the more actionable pathway for policymakers seeking to
reduce cancer mortality.> Country-specific predictions and
SHAP attributions for countries with the highest mortality-to-
incidence ratios are detailed in Supplementary Table S3A,
available at https://doi.org/10.1016/j.annonc.2025.11.014.
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Conversely, countries with the lowest predicted mortality-to-
incidence ratios and their corresponding SHAP drivers are
presented in Supplementary Table S3B, available at https://
doi.org/10.1016/j.annonc.2025.11.014.

Figure 3 demonstrates the heterogeneity in feature im-
pacts across countries, with the same health system factor
showing positive contributions to cancer mortality in some
nations while reducing it in others.

DISCUSSION

This approach represents a paradigm shift from describing
associations to providing actionable intelligence. While
previous linear analysis established that UHC and GDP per
capita matter globally, SHAP analysis reveals the specific
magnitude of their importance for each country and iden-
tifies additional factors that may be more impactful in
specific national contexts. For instance, while radiotherapy
capacity ranks second globally by the SHAP analysis, it may
be the primary driver of poor outcomes in specific countries
with adequate number of facilities but insufficient cancer
infrastructure.

The model’s strong performance across diverse global
contexts (185 countries spanning all income levels) dem-
onstrates robustness and generalizability. The consistent
feature selection across cross-validation runs confirms
model stability and reliability of the SHAP attributions.

While this analysis aggregates pan-cancer outcomes to
provide broad health system insights, the relative impor-
tance of these drivers likely varies substantially by cancer
type. For cancers highly responsive to radiotherapy, such as
breast, cervical, and certain head and neck malignancies,
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Figure 2. Global feature importance based on mean absolute SHAP values, revealing gross domestic product (GDP) per capita (22.5%), radiotherapy centers per
population (15.4%), and universal health coverage (UHC) index (12.9%) as the most impactful factors worldwide. Bars indicate each predictor’s average impact on
model output for pan-cancer mortality-to-incidence ratio prediction, with health spending, work force, and access indices contributing less.

radiotherapy infrastructure may exert a disproportionately
large impact on outcomes.** Conversely, for cancers where
systemic therapy predominates (such as hematologic ma-
lignancies) or where early detection is critical (such as
colorectal cancer), factors like pathology services avail-
ability and screening program implementation may emerge
as more influential drivers of the mortality-to-incidence
ratio.>* Similarly, the impact of UHC expansion may differ
between cancers with established screening programs
(breast, cervical, colorectal, and lung) versus those without
guideline-recommended screening. For instance, cervical
cancer outcomes in low-resource settings are particularly
sensitive to both screening access and treatment avail-
ability, while blood cancer outcomes may be less associated
with changes in radiotherapy infrastructure.>® Future work
should employ cancer-specific models to identify which
health system levers provide the greatest return on in-
vestment for particular malignancies, enabling even more
targeted policy recommendations.

Implications for practice and policy

Our findings provide several actionable insights for clini-
cians and policymakers working to strengthen national
cancer control. Firstly, radiotherapy infrastructure and UHC
indices emerge consistently as high-yield investments,
demonstrating robust associations with improved
mortality-to-incidence ratios across a range of country
contexts. Secondly, the data highlight that increased health
spending, while necessary, is insufficient to drive outcomes
unless coupled with strategic and efficient resource allo-
cation; simply increasing budgets without targeting im-
pactful interventions may deliver only marginal gains.

6 https://doi.org/10.1016/j.annonc.2025.11.014

Thirdly, the interpretability of country-specific SHAP profiles
generated by our machine learning models offers new
potential for directly informing national cancer control
strategies. Such tools enable policymakers to identify and
prioritize interventions tailored to their unique health sys-
tem bottlenecks and strengths, moving beyond generic
recommendations toward precision public health ap-
proaches. Ultimately, adoption of explainable artificial in-
telligence (Al) and country-level modeling can help focus
investments in resource-constrained settings, ensuring that
expansions in infrastructure, work force, and coverage vyield
tangible improvements in cancer survival.

Future research directions

While this study leverages country-level data to reveal
actionable policy levers for cancer system strengthening,
important opportunities remain for further investigation.
Future work should focus on subnational analyses to dissect
regional disparities, illuminate urban—rural divides, and guide
more granular policymaking. Additionally, site-specific
modeling is needed to determine which health system fac-
tors most strongly influence outcomes for individual cancer
types, enabling highly targeted intervention design. Such ef-
forts will require the continued development and harmoniza-
tion of high-quality, regionally representative cancer registry
and health system data to enable robust and context-specific
modeling. Finally, the integration of cost-effectiveness ana-
lyses will be essential to ensure that recommended in-
terventions not only improve outcomes but also maximize
health system efficiency and sustainability. As such, the com-
bination of explainable Al, high-resolution data, and economic
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Figure 3. SHAP summary (beeswarm) plot showing the relative impact of health system predictors on country-level cancer mortality-to-incidence ratio (MIR)
predictions. Each point is a country, with color encoding the feature value (blue: low, pink: high). Points to the right have positive SHAP values and push MIR higher;
points to the left have negative SHAP values and lower MIR. Predictors are ordered by overall influence, with gross domestic product (GDP) per capita, universal
health coverage (UHC) index, and radiotherapy centers per population exerting the largest effects. The distribution within each row depicts the magnitude, direction,
and variability of each feature’s contribution, revealing how health system characteristics shape national cancer burden estimates across 185 countries.

evaluation represents an essential next step to advance pre-
cision cancer policy and deepen the global evidence base.

Limitations

Important limitations must be considered when interpreting
these findings. Firstly, the ecological study design relies on
national-level aggregated data, which precludes inferences
about individual-level relationships and is subject to ecolog-
ical fallacy. MIR is affected by registry completeness, inci-
dence ascertainment, and diagnostic infrastructure, and may
not exclusively reflect cancer care effectiveness. Policy inter-
pretation should consider these factors, especially in lower
resource settings. SHAP values, while mathematically
rigorous, represent model-based feature attributions rather
than causal effects. These attributions quantify each variable’s
contribution to predictions within our model framework but
cannot establish whether intervening in these factors would
produce the predicted mortality reductions. Country-specific
interventional studies or quasi-experimental designs are
needed to validate causal relationships before implementing
large-scale policy changes based solely on these associations.
Additionally, unmeasured confounders at the national level,
temporal dynamics, and implementation contexts may sub-
stantially modify the actual impact of health system in-
terventions. Therefore, our findings should be interpreted as
generating hypotheses and identifying priority areas for
further investigation rather than definitive evidence for spe-
cific policy interventions.

The ecological design introduces several specific sour-
ces of potential bias that warrant careful consideration.
Unmeasured confounders at the national level—including
cultural attitudes toward health care-seeking behavior,
governance quality indicators such as corruption indices,
and political stability—may significantly influence the
model’s SHAP attributions and could bias interpretations

Volume xxx m Issue xxx m 2025

of health system impacts. As such, our findings should
inform the prioritization of pilot interventions aimed at
validating high-impact drivers identified by the model.
Rigorous evaluation of such interventions will be critical
for confirming their effectiveness and ensuring that
resource allocation decisions are evidence-based. For
instance, countries with similar UHC indices but divergent
governance efficiency or institutional capacity could
demonstrate markedly different cancer outcomes, which
the model may attribute entirely to measured variables
rather than these unmeasured contextual factors. Addi-
tionally, subnational disparities in health care access,
infrastructure distribution, and cancer registry coverage
within countries are not captured in our national-level
analysis, potentially masking substantial within-country
heterogeneity that could be as large or larger than
between-country differences. Data quality represents
another critical limitation, particularly regarding GLOBO-
CAN estimates in low- and middle-income countries
where cancer registry systems may be incomplete, lead-
ing to potential under-reporting of both incidence and
mortality. Registry completeness varies substantially
across countries, with some nations relying on modeled
estimates rather than population-based data, which may
introduce systematic biases in MIR calculations. Future
studies should incorporate sensitivity analyses that strat-
ify results by data quality metrics, exclude countries with
low registry completeness scores, or weight observations
by data quality indicators to assess the robustness of
findings to these measurement limitations.

Future work should employ causal inference methods,
such as difference-in-differences analyses of policy imple-
mentations, instrumental variable approaches, or propensity
score methods applied to longitudinal data, to move beyond
these ecological associations toward causal understanding
of health system interventions on cancer mortality.

https://doi.org/10.1016/j.annonc.2025.11.014 7


https://doi.org/10.1016/j.annonc.2025.11.014

Conclusions

This machine learning approach with explainable Al trans-
forms global health system research from descriptive to
prescriptive, enabling evidence-based, country-specific
cancer system strengthening. As the global cancer burden
continues to grow, particularly in low- and middle-income
countries, such personalized policy guidance becomes
increasingly critical for optimizing limited resources and
maximizing population health impact.
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